
1

An Open Approach to IoT for Cortex-M
Create IoT endpoint devices using flexible,
scalable software components

May, 2020 White Paper

Overview
Arm Cortex-M processors have been shipped in more than 47 billion chips for a vast

range of applications, from industrial sensors to wearables. This growth has exploded

more so in the last few years due to the significant rise in connected products for diverse

markets. AWS IoT provides broad and deep functionality, spanning the endpoint

to the cloud, so customers can build IoT solutions for virtually any use case across a wide

range of devices. With designers of IoT applications under extraordinary pressure to build

innovative solutions quickly, affordably, and satisfy many design requirements,

how can the IoT continue to scale across a growing number of use cases?

This whitepaper showcases a simple path to developing secure Cortex-M based IoT devices

with Arm and AWS, and how together, the collaboration provides choice and scalability

for IoT developers.

Introduction
The common market prediction is that by 2035, one trillion connected IoT devices are

deployed world-wide. The applications span across all industries, for example: consumer,

industrial, metering, medical, agriculture to name just a few. A trillion is a massive number

and it breaks down for example to 10,000 different designs that are deploy in 10 million

units over a period of 10 years. Products that ship in very high volume are all cost sensitive

and therefore many IoT endpoint devices will be based on cost effective microcontrollers

that are available already in lots of variants.

Most designs will be started with low-cost evaluation boards that are today common in the

microcontroller industry utilizing reference designs that are based on open source software.

For rapid IoT device development, scaling of these reference designs to cost optimized and

resource constrained high-volume production is critical. An effective, flexible, easy-to-use

software development process is paramount, as embedded engineers will need

to optimize, extend, and validate complex software stacks that implement the overall device

functionality. Fig. 1 is a simplified view of the various software components in an IoT application.

2

Fig. 1: IoT application
components -
simplified

In Fig. 1 the components represent:

	 Device / Board HAL: hardware abstraction to the processor and the peripherals.

	 It also contains the overall device configuration that is specific to the system design.

	 RTOS: real-time operating system that is used for thread scheduling

	 and resource management.

	 Secure Network Interface: IP communication stack that implements an encrypted 	

	 connection to the internet. It may use different physical interfaces, such as wired 	

	 Ethernet, WiFi, or low-power radios

	 Cloud Connector: protocol stack that interfaces to the cloud solution provider.

	 For example, AWS provides an SDK for connecting to AWS IoT that is tailored

	 for embedded systems [7].

	 User Application: implements the bespoke functionality of the embedded system.

All these various software components are created and maintained by different vendors

with teams on various geographic locations. The challenges for the embedded software

engineers are:

	 Migrate a software reference design from evaluations kit to bespoke

	 production hardware

	 Optimize the resource usage to minimize system cost

	 Manage the various software components over the product lifecycle

To simplify the overall development process and increase the re-use of standardized

software, Arm has developed the Cortex Microcontroller Software Interface Standard

(CMSIS) . The CMSIS is a vendor-independent hardware abstraction layer for Arm

Cortex-M and Cortex-A processors and covers generic tool interfaces.

https://github.com/aws/aws-iot-device-sdk-embedded-C
http://www.arm.com/cmsis

3

CMSIS-Pack System
One component of CMSIS is the CMSIS-Pack system that provides a delivery mechanism

for device support and software components. The CMSIS-Pack system supports today

more than 6,000 different microcontrollers and provides ways to manage software

components from different sources. The CMSIS-Pack system is already implemented in the

IDE (integrated development environment) of several leading development toolkits such as:

	 Arm Development Studio

	 Arm Keil MDK

	 IAR Embedded Workbench for Arm

	 CMSIS Eclipse Plug-In (open-source project) as basis for several

	 other implementations.

The ability to distribute software components makes CMSIS-Packs attractive for software

platform providers. The following will focus on the benefits of CMSIS specifically for

software components.

Software Components
The CMSIS-Pack management system, that is integrated in various IDEs, makes it easy

to combine software components that are developed independently and even by different

vendors . A CMSIS-Pack can include a collection of software components provided as

source code or library with header files, configuration files and related documentation.

Software Component Selection in IDEs

Fig. 2 shows how software components are exposed to the user in the manage Run-Time

Environment (RTE) dialog of an IDE. RTE allows to select the software components

of your system.

Fig. 2: Software
component selection
in IDEs

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/what-are-cmsis-software-components

4

Software components can have dependencies to other software components. Fig 3. shows

the user view of these dependencies where the component MQTT requires a low-level

interface to the TRNG (True Random Number Generator) component. In the example

above, three different implementations are available for this software component and the

user should decide which implementation to use in the actual system. If there is just one

software component available, the RTE system can automatically pick this implementation.

Software components and API Interfaces

Fig 4. shows the different parts of a software component which consists of header files,

source or library files. Software components also typically provide interfaces that are

represented in header files to other parts of the software. There are two different types

of interfaces:

	 Component API that allows to use the functionality of the software

	 component itself.

	 Driver API to interface with a HAL or software components that is called

	 by the software component.

	

The software components are described in Pack Description (*.pdsc) Format (XML file)

that is specified in the CMSIS-Pack documentation [2]. The *.pdsc file refers the files that

represent a software component. Depending on the *.pdsc information, this dialog may

offer variants of a software component and show version information.

Fig. 3: Software
component
dependencies

http://www.arm-software.github.io/CMSIS_5/General/html/index.html

5

A common problem when providing a software component is that driver API headers evolve

over time. The apis element in the *.pdsc file allows a software component to define an API

to lower level software or hardware drivers. It shares header file and documentation

of an API interface across multiple other software components which ensures consistency.

This central header file allows to extend an API over time and the version information

of the API definition can be used by various implementations to guarantee consistency.

Software Packs

Software packs are a collection of one or more software components and simplify the

re-use, management, and distribution. While the structure of the software packs is flexible,

it is common practice that related software components are published in a single pack.

There are multiple ways to distribute a software pack that range from local installation

to wide-web distribution using a Pack Index Service. A Pack Index Service makes packs

available widely to development tools or web portals [8]. This makes it easy for software

vendors to provide a new software packs or update existing software packs.

Software packs that are distributed via the Pack Index Service are directly available in the

IDE of the development tools (Fig. 5). Embedded developers can therefore pick and choose

the relevant components from this software catalogue.

Fig. 4: API definition
for software
components

https://www.keil.com/dd2/pack/

6

Software packs can also request the installation of other additional packs (Fig. 6).

For example, Pack B can request that a specific version of Pack A is installed. The pack

management ensures that this pack is pulled. Software Pack Installer can request therefore

additional pack installations.

Fig. 5: Software Pack
Installer in the IDE

Fig. 6: Software Packs
can request related
Software Packs

This concept makes it easy to use other software packs as a basis for more complex

software. For example:

	 Board support pack requests the installation of related device pack.

	 Cloud connector requests the installation of a Crypto service pack.

Example programs that are based on software packs trigger the installation of the related

software packs which reduces the overall size of the examples. It makes it also easier to

ensure that example projects are using up-to-date software as explained in the following section.

Project Life Cycle Management

CMSIS uses semantic versioning across software packs, software components and related

configuration files [9]. A version number contains values for MAJOR.MINOR.PATCH

releases (for example version “2.3.12”) which indicates the compatibility of the software:

	 A change of MAJOR version number is an incompatible change.

	 A change of MINOR indicates added functionality in a backwards

	 compatible manner.

	 A change of PATCH are backwards compatible bug fixes.

https://semver.org/

7

Semantic versioning also provides ways to indicated pre-releases or the release quality

of a software (such as Alpha, Beta, etc.). This is important during the development cycle

of a software component itself.

Once the software component is used in an application, the RTE management in the IDE

keeps track of the initial pack that was used to install the software. Using the software pack

management in the IDE (Fig. 5) makes it easy to verify that your application is based

on current releases and gives you direct access to potential updates.

During the software development cycle of a product, this provides flexibility to manage

and control the software that is used. For example:

	 In the Concept phase of a new project, the features of the most recent software 	

	 components should be used. The latest versions of the available software packs 	

	 can be downloaded with the Software Pack Installer (Fig. 5).

	 During the Development phase only the latest version of the chosen or installed 	

	 software packs should be used. This is the default selection of most IDEs.

	 Once the software is in the Release phase only specific versions of software 		

	 components should be used. The RTE management in the IDE allows you to

	 fix the version of a software pack in a project (Fig. 7).

Fig. 7: Select specific
pack versions in the IDE

The semantic versioning used throughout all parts of the software components

supports migration to a newer version of a specific software component. Source files are

automatically replaced and configuration files that have project specific settings are tracked

for version changes. Some IDEs even simplify the migration of configuration settings into

newer versions of configuration files.

8

Security
Security is a mandatory but constantly changing and evolving requirement in connected

IoT systems, and many microcontrollers offer specific features. With regulations on the

horizon and new threats being identified, IoT devices need a strategy to protect against

security threats and software developers need a standardized way to access security features.

The Platform Security Architecture (PSA) offers a framework for securing connected

devices [4]. It provides a step-by-step guide to build in the right level of device security,

reduce risk around data reliability and allow businesses to innovate on new ideas to reap

the benefits of digital transformation.

For Cortex-M based microcontrollers, the Trusted Firmware-M (TF-M) provides a high-

quality open source reference implementation of secure software mandated by PSA. TF-M

forms the foundations of the Secure Processing Environment (SPE) of microcontrollers

providing Secure Boot, Isolation from untrusted Software and set of Secure Services that

can be used by Applications (Fig. 8).

Security
Fig. 8: Security
services provided
by TF-M

TF-M may be implemented in various ways, for example using an off-chip Secure Element

or multi-core processor systems. For cost-sensitive IoT applications, the Cortex-M23 and

Cortex-M33 processors implement TrustZone technology for Armv8-M, which is a system-

wide approach to security with hardware-enforced isolation built into the CPU.

TrustZone enabled microcontrollers are today available from several silicon vendors.

On Cortex-M23 or Cortex-M33 processors, the TF-M can be pre-configured for a specific

microcontroller using also the device specific security features. Such a pre-configured

version provides a standardized API to this security features and matches at the same time

the requirements for many IoT endpoint devices. As TF-M will be also provided as software

pack, the creation of IoT devices will be further simplified.

https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m

9

IoT Clients
An IoT client is a software interface which runs in the IoT endpoint device and establishes

the connection to a cloud service. It represents the software components that are required

for the Cloud Connector in Fig. 1 (or other places in this document). Many cloud service

providers offer open-source software that implements an IoT client for an embedded

system. Arm adopted these IoT clients and delivers it as software pack for using it in

Cortex-M based IoT endpoint devices.

The repositories for these public software packs are available on GitHub (https://github.

com/MDK-Packs/) and contain IoT clients for the following cloud service providers:

	 Amazon AWS IoT

	 Google Cloud IoT

	 IBM Watson IoT

	 Microsoft Azure IoT Hub

	 Paho MQTT (Eclipse) – generic not related

These IoT clients directly connect to the Secure Network Interface that is shown in Fig.

1. As IoT endpoint devices have diverse connectivity requirements, embedded software

developers will need to cope with different interface technologies to a network. Fig. 9

shows three different ways to implement the Secure Network Interface.

	 WiFi is the most popular interface of IoT endpoint devices. WiFi connectivity

	 for microcontrollers is frequently implemented using WiFi chipsets that connect

	 via SPI or UART to the microcontroller. The CMSIS-Driver framework defines both 	

	 the WiFi interface itself and the related drivers for UART or SPI. Today, several 		

	 popular WiFi chipsets are already supported with ready-to-use software packs [12].

	 Wired Ethernet interfaces are frequently used in industrial applications. The TCP/	

	 IP stack that is part of the Keil MDK Middleware can be used to connect to wired Ethernet.

	 A popular open-source TCP/IP stack is LwIP. Also, this software component

	 is available as software pack and interfaces to the CMSIS-Driver for Ethernet

	 MAC/PHY.

http://www2.keil.com/mdk5/cmsis/driver/

10

CMSIS-Driver
The CMSIS-Driver provide a consistent interface for middleware to physical device

hardware. Drivers that are specific to a microcontroller device, are frequently part

of the Device Family Pack.

 Arm also offers software pack with a set of generic CMSIS-Driver implementations that

support for example Ethernet MAC/PHY, Flash, or WiFi chipsets. The source code of these

drivers is open-source and available on GitHub [13].

To support the validation of the CMSIS-Driver, Arm offers a validation suite. This suite helps

the developers of CMSIS-Drivers to ensure consistency, for example a new driver

for a WiFi chipset can be verified. But it helps also the system developer of an IoT endpoint

device to verify the configuration and setup of the CMSIS-Driver interface.

An application note explains how to use these IoT Clients in software projects [11]. Using

these ready-made software components allows software developers to create flexible IoT

endpoint devices based on a wide portfolio of Cortex-M microcontroller devices. Future

versions of these IoT Clients will utilize the TF-M that is described in the previous

section “Security”.

Fig. 9: Various ways
to implement a
“Secure Network
Interface”

https://github.com/arm-software/CMSIS-Driver
http://www.keil.com/appnotes/docs/apnt_312.asp

11

IoT Layer Projects
For scaling example projects on a wide range of evaluation boards, Arm provides a layer

support for projects that are created using the CMSIS-Pack system. Layers are a set

of pre-configured software components. Fig. 10 shows how these layers can be applied

to IoT endpoint device examples:

Fig. 10: Project layer
configurations for
evaluation boards

	 I/O Layer represents the software components that connect to the physical 		

	 peripherals of an evaluation board.

	 Cloud Layer is the pre-configured interface to a specific cloud service provider.

Combining various I/O Layers with multiple Cloud Layers and related example code

will allow to deploy reference applications to many evaluation boards at scale.

For testing these examples, a Continuous Integration system is required, and this

is supported with the new CMSIS-Build and CMSIS-Test component. CMSIS-Build

is a MAKE-based system for verifying software against new software pack versions.

CMSIS-Test provides an interface to typical peripherals of evaluation boards, for example

LED, sensor inputs, display, or push buttons. However, it also gives access to these

peripherals via defined memory locations which may be used in test systems to stimulate

the application program.

The CMSIS-Test component also allows to disconnect example or application code

from physical board interfaces. This is useful during bring-up where parts of

the software are developed using evaluation boards. When such a software project

12

is ported to production hardware that does not provide board interfaces, the physical

interface can be disabled. This helps also to migrate example code from evaluation boards

to bespoke production hardware and ensure that fundamental functionality

works consistently.

Summary

Arm takes a holistic view to the development cycle of IoT endpoint devices using Cortex-M

microcontrollers. CMSIS ensures the software productivity that is required to create robust,

cost-effective applications. Many ready-to-use software building blocks are provided

to utilize the CMSIS-Pack concept.

PSA offers the framework for securing connected devices from ground-up. The TF-M

open-source software project provides the security services that are required in IoT

endpoint devices. TrustZone enabled Cortex-M microcontrollers deliver the processing

power for cost-sensitive mass production.

The development process described in this whitepaper is supported by various software

tools ranging from open source to commercial professional editions. Engineers can choose

the tooling for stringent testing that is mandatory in the embedded industry.

13

References
[1]	 Arm, “CMSIS Cortex Microcontroller Software Interface Standard”

www.arm.com/cmsis

[2]	 Arm, “CMSIS” documentation

www.arm-software.github.io/CMSIS_5/General/html/index.html

[3]	 Arm, C. Seidl, “What are CMSIS Software Components”

www.community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/

posts/what-are-cmsis-software-components

[4]	 Arm, “TrustZone for Cortex-M”

www.developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m

[5]	 Arm, “Platform Security Architecture”

www.arm.com/psa

[6]	 Trusted Firmware-M (TF-M)

www.trustedfirmware.org/

[7]	 AWS “SDK for connecting to AWS IoT from a device using embedded C”

www.github.com/aws/aws-iot-device-sdk-embedded-C

[8]	 Arm, “Pack Index Service for Keil MDK”

www.keil.com/pack

[9]	 Semantic Versioning 2.0.0

www.semver.org/

[10] Arm, “IoT Clients”

www.keil.com/iot

[11] Arm, “Application Note 312: Connecting to the Cloud”

www.keil.com/appnotes/docs/apnt_312.asp

[12] Arm, “CMSIS-Driver for WiFi”

www.www2.keil.com/mdk5/cmsis/driver/

[13] Arm, “Generic CMSIS-Driver for Cortex-M microcontrollers”

www.github.com/arm-software/CMSIS-Driver

 	 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments
and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

	 © Arm Ltd. 2020

http://www.arm.com/cmsis
http://www.keil.com/pack/doc/compiler/EventRecorder/html/
https://arm-software.github.io/CMSIS_5/General/html/index.html
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/what-are-cmsis-software-components
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/what-are-cmsis-software-components
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://www.arm.com/why-arm/architecture/platform-security-architecture
https://www.trustedfirmware.org/
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://www.keil.com/dd2/pack/
https://semver.org/
http://www.keil.com/iot
http://www.keil.com/appnotes/docs/apnt_312.asp
http://www2.keil.com/mdk5/cmsis/driver/
https://github.com/arm-software/CMSIS-Driver

